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1 Introduction

In the democracy of all branes, strings seem to occupy a privileged position, for a variety of

reasons. One argument suggesting that strings are unique among all branes points out the
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apparent nonexistence of the analog of string perturbation theory for membranes. As dis-

cussed in [1], this argument itself is related to several distinct phenomena. First, quantum

gravity is at its critical dimension on the two-dimensional string worldsheet, leading to a

sensible worldsheet quantum theory at each fixed order in the string perturbation expan-

sion. In contrast, no clear quantization technique is available to make sense of quantum

gravity coupled to matter on higher-dimensional worldvolumes, at least within the conven-

tional approach of renormalizable quantum field theory. Secondly, while two-dimensional

worldsheets can be organized in terms of a simple discrete invariant — the genus — which

counts the loops of diagrams, no such simple classification is available for membranes. This

fact is traditionally interpreted as an indication that if a quantum theory of membranes

existed, it would have to be strongly coupled. This in turn implies that even if the world-

volume theory on a fixed topology were well-defined, we would not know how to sum over

distinct topologies.

In this paper, we explore the possibility of constructing a new worldvolume quantum

theory of gravity and matter in 2 + 1 dimensions, at least in the simplest case of a bosonic

theory. The price we pay for the avoidance of some of the above-mentioned obstacles is a

strong anisotropy between space and time in the worldvolume theory, a phenomenon famil-

iar from the study of condensed matter systems at quantum criticality, dynamical critical

phenomena, and in statistical dynamics of systems far from equilibrium. In the process,

we will uncover a new class of gravity theories with anisotropic scaling between space and

time, characterized by a nontrivial dynamical critical exponent z. Such nonrelativistic

gravity models can clearly be of broader interest beyond 2 + 1 dimensional worldvolumes,

and we introduce them first in section 4 in the general case of D +1 spacetime dimensions,

before specializing to D = 2.

We begin by posing an auxiliary problem: Can we find a quantum theory of mem-

branes, such that its ground-state wavefunction reproduces the partition function of the

bosonic string? This type of question — about the existence of two systems in such a re-

lationship to each other — is central to many areas of physics, primarily with applications

to condensed matter. For example, one might start with a universality class describing

an equilibrium system in D dimensions at criticality, and ask how the critical behavior

extends to the dynamical phenomena in D + 1 dimensions. Requiring that in the static

limit one recovers the partition function of the original D-dimensional equilibrium system

is effectively equivalent to the type of question that we ask above. Essentially the same

logic has been used in recent years to produce new interesting classes of quantum critical

systems in D + 1 dimensions, starting from known classical universality classes in D di-

mensions. In stochastic quantization, one asks a similar question in imaginary time: The

task is to build a nonequilbrium system in D + 1 dimensions which relaxes at late times to

its ground state, which reproduces the partition function of a D-dimensional system one is

interested in. The techniques that we use in our construction of gravity models are closely

related to the methods used in these areas of condensed matter theory. Similar ideas have

been applied to Yang-Mills gauge theories in [2].

Additional motivation for asking our auxiliary question comes also in part from the

recent findings in topological string theory [3, 4], the OSV conjecture [5], topological M-
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theory [6], and noncritical M-theory [7, 8]. In that context, interesting relationships have

been discovered in which the partition function of one theory is related to a wavefunction of

another theory in a higher dimension, and one naturally wonders whether such connections

are more prevalent in the general context of string and M-theory.

2 The second-quantized theory

In this section, we first define the auxiliary problem a little more precisely. Then, we

will assume that the problem is solved at the level of first quantization, i.e., that we

can construct a membrane worldvolume theory whose ground-state wavefunction for the

membrane of spatial topology Σh reproduces the partition function of the bosonic string

on Σh. Given this assumption, we will show how to solve the problem at the second-

quantized level, in the Hilbert space of multi-membrane states. An attempt to solve the

first-quantized problem will then occupy us for the rest of the paper.

In first quantization, our auxiliary question can be interpreted as follows. We begin

with the critical bosonic string theory in the flat uncompactified spacetime with coordinates

XI , I = 1, . . . 26, described by the Polyakov action

W =
1

4πα′

∫
d2x

√
g gij∂iX

I∂jX
I . (2.1)

Its partition function Fh on a compact worldsheet Σh of genus h is defined as the path

integral

Fh =

∫

Ah/Gh

DX(x)Dgij(x) exp {−W [X(x), gij(x)]} , (2.2)

where Ah is the space of all fields XI(x) and gij(x) on Σh, the gauge group Gh consists of

worldsheet diffeomorphisms and Weyl transformations of Σh, and DX Dgij schematically

denotes the appropriate measure on the space of gauge orbits Ah/Gh. We would like to

construct a 2 + 1 dimensional quantum theory designed such that when it is quantized

canonically on Σh × R, this theory has a ground state whose unnormalized wavefunction

|Ψ0h〉 reproduces the string partition function on Σh,

Fh = 〈Ψ0h|Ψ0h〉. (2.3)

More precisely, we will impose a stronger condition which will imply (2.3): Representing

the ground state |Ψ0h〉 in the Schrödinger representation as a functional Ψ0h[X(x), gij(x)],

we will require that it reproduces

DX Dgij exp {−W [X, gij ]} = Ψ∗
0h[X, gij ]Ψ0h[X, gij ], (2.4)

as an equality between two densities on the space of gauge orbits Ah/Gh. The subsequent

integral over Ah/Gh then leads to (2.3).

In the case of h = 0, the partition function F0 of the critical bosonic string on S2

vanishes indentically, because the measure in (2.2) contains the inverse volume of the

noncompact conformal Killing symmetry group SL(2,C). This suggests that any membrane
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theory which solves our first-quantized problem should have no normalizable ground-state

wavefunction on S2 × R.

In the rest of this section, we will assume that |Ψ0h〉 which satisfies (2.3) is known, and

show that under this assumption, the second-quantized problem can be solved by elemen-

tary methods of many body theory. We first define the second-quantized string partition

function Z of the closed bosonic string theory to all orders in the string coupling gs,

Z ≡ exp

{
∞∑

h=0

g2h−2
s Fh

}
. (2.5)

This expression has a well-defined limit as gs → 0, because F0 = 0 as mentioned above.

We wish to find a ground state of the second-quantized theory of membranes which

reproduces this partition function Z. This state will be an element of the Fock space H of

multi-membrane states. (We denote states in this second-quantized Hilbert space by | 〉〉,
to distinguish them from the first-quantized quantum states of a single membrane.) Thus,

we are looking for a ground state |Ψ0〉〉 which satisfies

Z = 〈〈Ψ0|Ψ0〉〉. (2.6)

We choose to present the solution to the second-quantized problem first, because the

answer is robust and rather insensitive to the precise form of the solution to the first-

quantized problem. In fact, it is natural to expect that if the first-quantized problem has

a solution, it will not be unique — two distinct theories on the membrane worldvolume

can share the same ground state but differ in their spectra of excited states. This is

analogous to the relationship between static and dynamical critical phenomena: A single

static universality class can split into several distinct dynamical universality classes, which

all share the same equilibrium properties.

2.1 The Fock space of membranes

Imagine that we have been given a basis of single-membrane quantum states,

|Ψ0h〉, {|Ψαh〉} , (2.7)

where the index α denotes collectively all the excited states, and the ground state |Ψ0h〉
satisfies (2.3). The second-quantized Hilbert space H of multi-membrane states can then

be constructed by elementrary methods of many-body physics. First we associate a pair of

creation and annihilation operators with each state,

A0h, A†
0h, Aαh, A†

αh. (2.8)

These satisfy the canonical commutation relations,

[A0h, A†
0h′ ] = δhh′ , [Aαh, A†

βh′ ] = δαβδhh′ , (2.9)

(with all the unlisted commutators equal to zero), and can be used to define the second-

quantized Fock space Hh of quantum membranes of genus h, by first defining the Fock

space vacuum |0〉〉h via

A0h|0〉〉h = 0, Aαh|0〉〉h = 0. (2.10)

– 4 –
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The Fock space Hh is then built in the standard way by the action of the creation opera-

tors A†
0h, A†

αh on |0〉〉h. Each creation operator creates a membrane in the corresponding

quantum state |Ψ0h〉 or |Ψαh〉. States in Hh thus correspond to collections of an arbitrary

number of quantum membranes, each of genus h.

The total Hilbert space H is the tensor product of Hh over all values of h,

H ≡
∞⊗

h=0

Hh, (2.11)

The total Hilbert space H is the Fock space generated by the application of arbitrary

collections of creation operators on the Fock vacuum, defined as

|0〉〉 ≡
∞⊗

h=0

|0〉〉h. (2.12)

2.2 Bose-Einstein condensation and spacetime superfluidity

The second-quantized Fock space H contains multi-membrane states, with any number of

membranes of any genera. We claim that our desired state |Ψ0〉〉 is a specific state in H,

given by

|Ψ0〉〉 =

∞⊗

h=0

exp
{
gh−1
s A†

0h

}
|0〉〉h = exp

{
∑

h

gh−1
s A†

0h

}
|0〉〉. (2.13)

A direct calculation using (2.3) and the elementary algebra of creation and annihilation

operators shows that (2.13) indeed satisfies the desired property (2.6).

This state has an interesting intuitive interpretation. For each value of h, this state

looks like the ground state of a spacetime theory in which membranes of genus h — all in

their ground state |Ψ0h〉 — have formed a spacetime Bose-Einstein condensate. Defining

the number operators in each membrane sector via

N0h = A†
0hA0h, Nαh = A†

αhAαh, (2.14)

we see that the proposed ground state (2.13) is not an eigenstate of N0h and thus does not

contain a definite finite number of membranes.

Instead, the ground state is an eigenstate of A0h, with eigenvalue gh−1
s . This indicates

that the strength of the condensate of membranes of different genera is correlated over

all h, via the value of the string coupling constant gs. It would be interesting to study

model Hamiltonians that reproduce the same ground state. Such an analysis would be

difficult in the absence of at least some information about the membrane excited states.

However, the correlated nature of the condensate suggests that in this second-quantized

ground state, membranes interact via a local contact interaction, which is insensitive to the

global topology of the membranes. This interaction allows processes in which a membrane

of genus h gets pinched into a pair of genera h′ and h−h′ respectively, or the self-pinching

in which the genus changes to h − 1, plus the reversal of these two processes.

In conventional condensed matter systems, ground states that take the form of a Bose-

Einstein condensate typically lead to superfluidity, characterized by gapless excitations
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with an emergent relativistic low-energy dispersion relation. It is tempting to predict that

the membrane theory whose ground state is given by (2.13) similarly exhibits spacetime

superfluidity. However, the knowledge of the ground state (2.13) itself is not sufficient

to determine whether the system has excitations that behave as those of a superfluid. As

pointed out above, it is possible that different solutions of the first-quantized problem might

exist, sharing the same single-membrane ground state |Ψ0h〉 but with different spectra of

excited states |Ψαh〉. For example, a minimal solution to our first-quantized problem would

be given by a theory of membranes where the ground state |Ψ0h〉 is the only physical state

on Σh, and the membrane has no physical excited states (and in particular, no states

carrying nonzero values of spatial momenta). In such a minimal realization, the spacetime

theory would be effectively a topological theory, and the Bose-Einstein condensate would

not be accompanied by spacetime superfluidity.

3 The first-quantized theory

Having shown how the second-quantized problem is solved assuming the existence of a

worldsvolume theory that reproduces the worldsheet path integral of string theory genus

by genus, it now remains to solve the corresponding first-quantized problem.

3.1 Worldvolume matter: Lifshitz scalars and quantum criticality

We will pose the question first for a single worldsheet scalar field, before coupling to world-

sheet gravity. In fact, it will be useful to take the broader perspective and consider a scalar

field theory in D flat Euclidean dimensions x = (xi), i = 1, . . . D, with the Euclidean action

W =
1

2

∫
dDx (∂iΦ∂iΦ) . (3.1)

The partition function of the free scalar takes the form

Z =

∫
DΦ(x) exp {−W [Φ(x)]} , (3.2)

of a path integral on the space of field configurations Φ(x). Imagine now a theory in

D + 1 dimensions whose configuration space coincides with the space of all Φ(x). In the

Schrödinger representation, the wavefunctions of this theory are functionals Ψ[Φ(x)]. For

any given wavefunction, |Ψ[Φ(x)]|2 is naturally a density on the configuration space. We

want to design our system such that its ground-state wavefunction Ψ0[Φ(x)] reproduces

the path integral density of (3.2),

DΦ(x) exp {−W [Φ(x)]} = Ψ∗
0[Φ(x)]Ψ0[Φ(x)]. (3.3)

As it turns out, a construction which yields the desired answer for the scalar field is

known in the condensed matter literature (see, e.g., [9]). It is given in terms of a slightly

exotic scalar field theory in D + 1 dimensions, whose action is

S =
1

2

∫
dt dDx

{
(Φ̇)2 − 1

4
(∆Φ)2

}
. (3.4)

– 6 –
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Here ∆ is the spatial Laplacian, ∆ = ∂i∂i. Note that S is a sum of a “kinetic term”

involving time derivatives, and a “potential term” which is of a special form: It can be

derived from a variational principle,

1

4
(∆Φ(x))2 =

(
1

2

δW

δΦ(x)

)2

, (3.5)

where W is the action (3.1) of the Euclidean scalar theory. Henceforth we say that theories

that enjoy this property satisfy the “detailed balance” condition. This property, and its

extension to the case involving gravity, will play a central role in the rest of the paper.

The scalar field theory (3.4) is a prototype of a class of models introduced and studied

in the context of tri-critical phenomena in condensed matter physics by Lifshitz [10] in 1941,

and is consequently referred to in the literature as the “Lifshitz scalar” field theory [11, 12].

In the context originally studied by Lifshitz [10], t is Wick rotated to become one of the

spatial dimensions, and the Lifshitz scalar then describes the tricritical point connecting

the phases with a zero, homogeneous or spatially modulated condensate of Φ. The same

theory is also relevant in the description of various universality classes in dynamical critical

phenomena, and in quantum criticality. In particular, the Lifshitz scalar is believed to be in

the same universality class as the quantum dimer problem, which is particularly intriguing

because of the close connection [8, 13] between dimer models, topological string theory and

noncritical M-theory.

Why is the ground-state wavefuction of the Lifshitz scalar theory related to the par-

tition function (3.2)? The key to this fact is the detailed balance condition obeyed by

the Lifshitz scalar. To identify the ground-state wavefunction, we quantize the theory

canonically. The Hamiltonian of the Lifshitz scalar is

H =
1

2

∫
dDx

{
P 2 +

1

4
(∆Φ)2

}
. (3.6)

In the Schrödinger representation we realize the momenta conjugate to Φ(x) as

P (x) = −i
δ

δΦ(x)
. (3.7)

Up to a normal-ordering constant, the Hamiltonian can be written as

H =
1

2

∫
dDx

(
− δ

δΦ
− 1

2
∆Φ

)(
δ

δΦ
− 1

2
∆Φ

)
=

∫
dDxQQ, (3.8)

where

Q(x) = iP (x) − 1

2
∆Φ(x) =

δ

δΦ(x)
− 1

2
∆Φ(x), (3.9)

and Q is its complex conjugate. Consequently, any functional Ψ0[Φ(x)] that is annihilated

by Q,

QΨ0[Φ(x)] ≡
(

δ

δΦ(x)
+

1

2
∆Φ(x)

)
Ψ0[Φ(x)] = 0, (3.10)
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is an eigenstate of the Hamiltonian with the lowest eigenvalue, and thus represents a

candidate wavefunction of the ground state. In order for this candidate to be a true

wavefunction, it must be normalizable.

Because the Lifshitz scalar theory satisfies the detailed balance condition, it is easy to

find a simple solution to (3.10), given by

Ψ0[Φ(x)] = exp

{
−1

4

∫
dDx ∂iΦ∂iΦ

}
. (3.11)

This is a normalizable wavefunction of the ground state, which in turn yields (3.3) and

solves our problem.

The fact that the Hamiltonian (3.8) can be written as
∫
QQ, and the subsequent role

played by the simpler condition QΨ0 = 0 in indentifying the lowest energy eigenstates, are

reminiscent of supersymmetry and the role played by the BPS condition. This resemblance

is not accidental, and can be rephrased in terms of an underlying supersymmetry with

scalar supercharges, formally similar to topological BRST symmetry. In the context of

condensed matter applications mentioned above, this symmetry is known as the Parisi-

Sourlas supersymmetry [14] (see also [15] for a nice early review). In the context of strings

and membranes, Parisi-Sourlas supersymmetry played a role in [16]. We will not use the

supersymmetric formalism in the present paper.

Regardless of its relation with the Euclidean scalar theory in D dimensions, the Lifshitz

scalar theory in D + 1 dimensions is an interesting system in its own right. Its action (3.4)

defines a Gaussian RG fixed point, with scaling properties which are somewhat exotic from

the perspective of relativistic quantum field theory. We will measure the scaling properties

of various quantities in the units of inverse spatial length. In order for the two terms in

the action to scale the same way, we must assign anisotropic scaling properties to space

and time,

[x] = −1, [t] = −2. (3.12)

In condensed matter systems, the degree of anisotropy between time and space is measured

by the dynamical cricial exponent z. Lorentz symmetry in relativistic systems implies

z = 1, while nonrelativistic systems with Galilean invariance have z = 2. More gener-

ally, the dynamical critical exponent can be defined in terms of the scaling properties of

two-point functions,

〈Φ(x, t)Φ(0, 0)〉 =
1

|x|2[Φ]
f
( x

t1/z

)
, (3.13)

where [Φ] is the conformal dimension of Φ. In the case of the free Lifshitz scalar theory,

we have z = 2, and

[Φ] =
D − 2

2
. (3.14)

This conformal dimension is of course different from the dimension [Φ]z=1 of the scalar field

at the relativistic Gaussian fixed point in D+1 dimensions, which is [Φ]z=1 = (D−1)/2. As

a result, the lower critical dimension of the Lifshitz scalar at which the two-point function

– 8 –
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becomes logarithmic is 2 + 1, and not 1 + 1 as in the usual relativistic case.1 Remarkably,

making the system anisotropic causes a shift in the critical dimension of the system.

In the case of relativistic scalar field theory, the importance of 1 + 1 being the critical

dimension can hardly be overstated. This fact is at the core of string theory, and represents

perhaps the most elegant way [17, 18] of deriving Einstein’s equations and their systematic

higher-order corrections, from the simple condition of quantum conformal invariance of

the nonlinear sigma model. Similarly, one can can generalize the Lifshitz scalar theory

to an anisotropic nonlinear sigma model, which will have an infinite number of classically

marginal couplings in 2 + 1 dimensions. A detailed study of the RG properties of such

Lifshitz-type sigma models should be very interesting.

3.2 Requirements on worldvolume gravity

In order to extend the construction from the matter sector to the full string worldsheet

theory, we need to couple the Lifshitz scalar theory to some form of worldvolume gravity.

When this worldvolume system is quantized on Σh × R, the resulting wavefunction of the

membrane ground state is supposed to reproduce (2.4). Consequently, the ground-state

wavefunction must be a functional of XI(x) and gij(x) defined on the space of gauge orbits

Ah/Gh: In other words, Ψ0 must be invariant under worldsheet diffeomorphisms and Weyl

transformations.

Our task is to design a gravity theory in 2 + 1 dimensions which reproduces these ex-

pected properties of the ground-state wavefunction, much like the Lifshitz scalar reproduces

the path integral of the worldsheet matter sector. This gravity theory should naturally cou-

ple to the anisotropic theory of matter described by Lifshitz scalars with z = 2. In order

to match the scaling properties of the matter sector, this gravity theory should therfore

also be at quantum criticality with z = 2.

The possibility of constructing a nonrelativistic theory of gravity with anisotropic

scaling and nontrivial values of z is clearly of a more general interest. Therefore, we devote

section 4 to the presentation of such anisotropic gravity models in the general case of D+1

dimensions, and return to D = 2 in section 5.

4 Gravity at a z = 2 Lifshitz point in D + 1 dimensions

In this section, we formulate a classical theory of gravity with dynamical critical exponent

z = 2. As in the case of the Lifshitz scalar reviewed in section 3.1, it will be instructive to

consider our construction in D + 1 dimensions, specializing to the case of D = 2 only later

as required for the application to the membrane worldvolume.

We will assume that our spacetime is topologically of the form M = R × Σ, where

Σ is a compact D-dimensional space. This assumption will simplify our construction, by

avoiding the discussion of the possible spatial boundary terms in the action.

1Straightforward generalizations of the Lifshitz theory exist [12], such as theories at the (m, n) Lifshitz

point, with m dimensions like t and n dimensions like x.
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4.1 First ingredients

As a minimal requirement, our theory in D + 1 dimensions should describe spatial com-

ponents gij(x, t) of the metric, i, j = 1, . . . D. The gauge symmetries will surely have to

contain diffeomorphisms of space. Motivated by the form of the Lagrangian for the Lifshitz

scalar, our gravity theory will have a kinetic term given by

SK =
1

2κ2

∫
dt dDx

√
g ġij Gijkℓ ġkℓ. (4.1)

We have introduced a coupling constant κ, whose physical role will become clear later,

in section 4.5. Throughout the paper, we use “ ˙ ” to denote the time derivative; e.g.,

∂tgij ≡ ġij .

In order to write down this kinetic term, we needed a “metric on the space of metrics,”

denoted here by Gijkℓ. Spatial diffeomorphism invariance of the action requires Gijkℓ to

take, up to an overall normalization, the following form

Gijkℓ =
1

2

(
gikgjℓ + giℓgjk

)
− λ gijgkℓ, (4.2)

with λ an arbitrary real constant. This object is very similar to the familiar De Witt metric

of general relativity. In the relativistic theory, the full spacetime diffeomorphism invariance

fixes the value of λ uniquely, to equal λ = 1. In that case, the “metric on the space of

metrics” Gijkℓ is known as the “De Witt metric.” We will extend this terminology to our

more general case as well, even when λ is not necessarily equal to one.

For now, λ plays the role of a coupling constant. In section 5 we will see that the

value of this coupling is uniquely determined, if we require that the theory also respect an

anisotropic version of local Weyl invariance.

4.2 The potential term

In our gravity theory, we wish to maintain the anisotropy of scaling between space and

time, consistent with the value of dynamical critical exponent z = 2 of the Lifshitz matter

fields. As a result, we look for a “potential term” SV of fourth-order in spatial derivatives,

so that the full action of our system is the sum of two parts,

S = SK − SV . (4.3)

In principle, if we follow the usual logic of effective field theory, many such terms can be

written down and therefore should be included in the effective action. However, the choices

can be severely reduced, if we require the existence of an action W [gij(x)] in D dimensions

such that

SV =
κ2

2

∫
dt dDx

√
g Eij Gijkℓ Ekℓ, (4.4)

where Eij follows from the variational principle with action W [gij(x)],

√
g Eij =

1

2

δW

δgij
. (4.5)
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In other words, we require that our potential term satisfies the gravitational analog of the

“detailed balance” condition mentioned in section 3.1.

In (4.4), Gijkℓ denotes the inverse of the De Witt metric,

GijmnGmnkℓ =
1

2

(
δk
i δℓ

j + δℓ
iδ

k
j

)
. (4.6)

More explicitly, we have

Gijkℓ =
1

2
(gikgjℓ + giℓgjk) − λ̃ gijgkℓ, (4.7)

with

λ̃ =
λ

Dλ − 1
. (4.8)

In order to end up with SV which is invariant under spatial diffeomorphisms and of

fourth order in spatial derivatives, we must take W to be the Einstein-Hilbert action in D

dimensions,2

W =
1

κ2
W

∫
dDx

√
g R. (4.9)

The general action W could also contain a cosmological constant term ΛW . However, for

now, we set ΛW = 0 in order to focus on the leading term in W that produces the dominant,

highest-dimension operators in SV . We will return to the discussion of the general case

with nonzero ΛW in section 4.6.

With the choice of the Einstein-Hilbert term (4.9)as W , the full action is given by

S =
1

2

∫
dt dDx

√
g

{
1

κ2
ġijG

ijkℓġkℓ −
κ2

4κ4
W

(
Rij − 1

2
Rgij

)
Gijkℓ

(
Rkℓ − 1

2
Rgkℓ

)}

=
1

2

∫
dt dDx

√
g

{
1

κ2
ġijG

ijkℓġkℓ −
κ2

4κ4
W

(
RijRij + aR2

)}
, (4.10)

where a is a constant equal to

a =
1 − λ − D/4

Dλ − 1
. (4.11)

Note that in a large range of values of D and λ the potential term SV in the action is

manifestly positive definite.

4.3 Extending the gauge symmetries

The action in (4.10) appears to be a good first step, but it is only invariant under spatial

diffeomorphisms

δxi = ζi(xj) (4.12)

and global time translations, and there is no Weyl invariance. As a result, when we

specialize to D = 2, the hypothetical ground-state wavefunction would depend on the

conformal factor of the two-dimensional metric. Thus, we will need to accomodate Weyl

2Our notation in this paper is strictly nonrelativistic: All quantities such as the covariant derivative

∇i, the Ricci scalar R, the Ricci tensor Rij etc., are always defined in terms of the metric gij on the

D-dimensional leaves of the spacetime foliation, unless explicitly stated otherwise.
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invariance in order to make contact with the partition function of critical string theory.

The way to resolve these issues is to require extended gauge symmetries, which will in turn

require new gauge fields.

4.3.1 Foliation-preserving diffeomorphisms

Given the preferred role of time in our theory, it is natural to extend the gauge symmetry

of time-independent spatial diffeomorphisms enjoyed by (4.10) to all spacetime diffeomor-

phisms that respect the preferred codimension-one foliation3 F of spacetime M by the

slices of fixed time. Such “foliation-preserving diffeomorphisms” will consist of spacetime-

dependent spatial diffeomorphisms as well as time-dependent time reparametrizations, gen-

erated by infinitesimal transformations

δxi = ζi(t,x), δt = f(t). (4.13)

Together with the new symmetries, we also introduce new fields, N and Ni. From the

point of view of the D + 1 canonical ADM formalism in relativistic gravity, these are the

well-known “lapse and shift” variables. Thus, our theory will share its field content with

conventional relativistic gravity theory, at least if N and Ni are allowed to be functions of

both space and time.

4.3.2 Spacetime diffeomorphisms and the nonrelativistic limit

The algebra of foliation-preserving diffeomorphisms and its action on the fields gij , Ni and

N can be conveniently derived from the relativistic action of all diffeomorphisms on gµν ,

by restoring the speed of light c and taking the nonrelativistic limit c → ∞. We start with

the relativistic metric gµν in the usual ADM decomposition but with c restored,

gµν =

(
−N2 + NiN

i/c2, Ni/c

Ni/c, gij

)
, (4.14)

and with x0 = ct. One can view this expression as a leading order of an expansion in 1/c.

Similarly, we expand the generators vµ of spacetime diffeomorphisms in the powers of 1/c,

vt = cf(t,x) + O(1/c), vi = ζi(t,x) + O(1/c2). (4.15)

In order to obtain a nonsingular c → ∞ limit, the generator of time reparametrizations

f in (4.15) must be restricted to be a function of t only. With this condition, the stan-

dard action of relativistic diffeomorphism generators vµ on gµν contracts to the diffeomor-

phisms (4.13) that preserve the preferred foliation of spacetime by leaves of constant time

t. Their action on the component fields is obtained by taking the c → ∞ limit of the

3A codimension-q foliation F of a d-dimensional manifold M is defined as M equipped with an atlas of

coordinate systems (ya, xi) a = 1, . . . q, i = 1, . . . d− q, such that the transition functions take the restricted

form (eya, exi) = (eya(yb), exi(yb, xj)). For the general theory of foliations, see e.g. [19–21] and references

therein.
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relativistic diffeomorphisms vµ acting on gµν , which leads to

δgij = ∂iζ
kgjk + ∂jζ

kgik + ζk∂kgij + f ġij ,

δNi = ∂iζ
jNj + ζj∂jNi + ζ̇jgij + ḟ Ni + f Ṅi, (4.16)

δN = ζj∂jN + ḟ N + f Ṅ .

In order to obtain a smooth c → ∞ limit, f can only be a function of t, while ζi is allowed

to depend on both t and xj: The algebra becomes that of the foliation-preserving diffeo-

morphisms (4.13). Note that the transformation rules under foliation-preserving diffeomor-

phisms do not depend of the anticipated value of the dynamical exponent z that measures

the degree of anisotropy between space and time. Thus, the value of z is not determined

by the gauge symmetries, and represents an interesting dynamical quantity in our theory.

Because the generator of time diffeomophisms f(t) is a function of time only, the gauge

symmetry of foliation-preserving diffeomorphisms has one less generator per spacetime

point than general diffeomorphism symmetry. It is natural to match this by restricting

the corresponding gauge field N , associated with the time diffeomorphisms, to also be a

function of only t. This step is not strictly mandated by the structure of the symmetry

transformations (4.16), but allowing N to be a general function of t and x would lead to

difficulties in quantization, at least in the absence of extra gauge symmetries.

There is an interesting possibility of taking the nonrelativistic limit in such a way

that the number of local symmetries matches that of general relativity. It involves keeping

the subleading term in the 1/c expansion of the time-time component of the metric,4

g00 = −N2 + (NiN
i + 2A)/c2, and keeping the subleading term in the time component of

the diffeomorphism transformation, vt = cf(t)− ε(t,x)/c. It turns out that ε(t,x) acts on

the fields by

δεA = N2ε̇ + NṄε − N2N i∂iε,

δεNi = N2∂iε, (4.17)

δεN = δεgij = 0.

If the leading term N(t) in g00 is restricted to be only a function of time as suggested

above, this new symmetry is simply an Abelian gauge symmetry with gauge parameter

Nε, and with A/N and Ni/N transforming as an Abelian connection. However, extending

the foliation-preserving diffeomorphisms by this Abelian gauge symmetry appears to run

into difficulties with constructing nontrivial Lagrangians invariant under this symmetry,

and we will not pursue the possibility of such an extended gauge symmetry in this paper.

4.3.3 The covariant action

In order to make our theory invariant under foliation-preserving diffeomorphisms, we need

to decorate various terms in the action (4.10) by the appropriate dependence on N and Ni.

4This is the place which would be occupied in the nonrelativistic expansion of general relativity by the

Newton potential.
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For example, the covariant volume element is
√

gN , and the time derivative of the metric

is replaced by

ġij →
1

N
(ġij −∇iNj −∇jNi) , (4.18)

which transforms covariantly under foliation-preserving diffeomorphisms. Similarly, any

term of the form ∫
dt dDx

√
g V [gij ] (4.19)

which respects time-independent spatial diffeomorphisms and does not depend on time

derivatives of gij can be covariantized as
∫

dt dDx
√

g N V [gij ]. (4.20)

Indeed, we have

δf

∫
dt dDx

√
g N V [gij ] =

∫
dt dDx ∂t (

√
g f N V [gij ]) . (4.21)

In the end, the full covariant action is

S =
1

2

∫
dt dDx

√
g

{
1

κ2N
(ġij −∇iNj −∇jNi) Gijkℓ (ġkℓ −∇kNℓ −∇ℓNk)

− κ2N

4κ4
W

(
Rij − 1

2
Rgij

)
Gijkℓ

(
Rkℓ − 1

2
Rgkℓ

)}
. (4.22)

Setting N = 1, Ni = 0 would restore the reduced action (4.10).

4.3.4 Detailed balance condition

As is the case for relativistic quantum field theories, explicit calculations are most conve-

niently performed after the Wick rotation to imaginary time, τ = it. This rotation entails

Nj → iNj . After the rotation, the action can be rewritten — up to total derivatives — as

a sum of squares,5

S =
i

2

∫
dτ dDx

√
gN

{[
1

κN
(ġij −∇iNj −∇jNi) +

κ

2κ2
W

Gijmn

(
Rmn − 1

2
Rgmn

)]

× Gijkℓ

[
1

κN
(ġkℓ −∇kNℓ −∇ℓNk) +

κ

2κ2
W

Gkℓpq

(
Rpq − 1

2
Rgpq

)]}
. (4.23)

In order to see that (4.22) is indeed reproduced from (4.23) by the inverse Wick rotation,

we need to show that the cross-terms
∫

dτ dDx
√

gN

{[
1

κN
(ġij −∇iNj −∇jNi)

]
Gijkℓ

[
κ

2κ2
W

Gkℓpq

(
Rpq − 1

2
Rgpq

)]}
(4.24)

are a sum of total derivatives. First, we have
∫

dτ dDx
√

gN

{
1

κN
ġijG

ijkℓ

[
κ

2κ2
W

Gkℓpq

(
Rpq − 1

2
Rgpq

)]}

= −1

2

∫
dτ dDx ġij

δW

δgij
= −1

2

∫
dτ dDx ∂τ (LW ), (4.25)

5In the Wick-rotated theory, “ ˙ ” denotes differentiation with respect to the imaginary time τ .
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where LW is the Lagrangian density, W =
∫

dτ dDxLW . For this to hold, it was crucial

that (i) the potential term SV is a square of terms (4.5) which originate from a variational

principle, and (ii) that the metric Gijkℓ used in the potential term SV is the inverse of the

De Witt metric Gijkℓ that appeared in the kinetic term SK .

Similarly,

∫
dτ dDx

√
gN

[
1

κN
(∇iNj + ∇jNi)

]
Gijkℓ

[
κ

2κ2
W

Gkℓpq

(
Rpq − 1

2
Rgpq

)]

= −
∫

dτ dDx∇iNj
δW

δgij
= −

∫
dτ dDx ∂i

(
Nj

δW

δgij

)
, (4.26)

as a consequence of the Bianchi identity ∇i(R
ij −Rgij/2) = 0, or alternatively as a conse-

quence of the gauge invariance of W under spatial diffeomorphisms.

Introducing an auxiliary field Bij, we can rewrite (4.23) in the following form,

S =
i

κ2

∫
dτ dDx

√
gN

{
Bij

[
1

N
(ġij −∇iNj −∇jNi) +

κ2

2κ2
W

Gijkℓ

(
Rkℓ − 1

2
Rgkℓ

)]

− 1

2
BijGijkℓB

kℓ

}
. (4.27)

All terms in (4.27) are at least linear in Bij. This is a hallmark of similar constructions

in nonequilibrium dynamics [22], dynamical critical phenomena [23, 24], quantum critical

systems [9, 25] and stochastic quantization [26–28]. Moreover, the coefficient of the term

linear in Bij has a special form, intimately related to an evolution equation for gij ,

ġij = − κ2

2κ2
W

NGijkℓ

(
Rkℓ − 1

2
Rgkℓ

)
+ ∇iNj + ∇jNiġij

≡ κ2

2
NGijkℓ

δW

δgkℓ
+ ∇iNj + ∇jNi. (4.28)

Since the curvature terms in this equation originated from the variational principle, this

equation simply states that the evolution of gij is governed by a gradient flow δW/δgij on

the space of metrics, up to possible gauge transformations represented by Ni and N . In

the context of condensed matter applications mentioned above, systems whose action S is

so associated with a gradient flow generated by some W are said to satisfy the condition of

“detailed balance.” Investigating under what circumstances quantum corrections preserve

these features of the action is the key to proving renormalizability of this setup.

Under rather general circumstances, theories which satisfy the detailed balance condi-

tion have simpler quantum properties than a generic theory in D + 1 dimensions. Their

renormalization properties are often inherited from the simpler renormalization of the as-

sociated theory in D dimensions with action W , plus the possible renormalization of the

relative normalization between the kinetic and potential terms in S. Examples of this phe-

nomenon include scalar fields [29] or Yang-Mills gauge theories [28] (see also [2]). It will be

important to analyze under what circumstances an analog of such “quantum inheritance

principle” is valid for our nonrelativistic gravity models. This analysis is, however, beyond

the scope of the present paper.
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In passing, we note that the structure of the evolution equation (4.28) suggests an in-

timate relation between our theory of nonrelativistic gravity and the theory of Ricci flows,

which in turn play a central role in Perelman’s approach [30] to the Poincaré conjecture. In-

deed, (4.28) is a covariantized Ricci flow equation, or more precisely a family of generalized

Ricci flows parametrized by λ,

ġij = − κ2

2κ2
W

N

[
Rij +

1 − 2λ

2(Dλ − 1)
Rgij

]
+ ∇iNj + ∇jNi. (4.29)

Setting N = 1 and Ni = 0 recovers the naive Ricci flow equation. The decorations of the

naive flow in (4.29) by N and Ni take into account the fact that geometrically, we only care

about the flow up to a – possibly time-dependent — spatial diffeomorphism and a time

reparametrization. These gauge symmetries of the Ricci flow problem match naturally the

foliation-preserving diffeomorphism invariance of our gravity theory.

4.4 Hamiltonian formulation

It is instructive to rewrite our theory with foliation-preserving diffeomorphism invariance

in the canonical formalism, generalizing the ADM formulation of general relativity. The

Hamiltonian formulation is particularly natural for the class of gravity theories proposed

here, because the D + 1 split of the spacetime variables is naturally compatible with the

preferred role of time and the anisotropic scaling.

The canonical momenta conjugate to gij are

πij =
δS

δġij
=

√
g

κ2N
Gijkℓ (ġkℓ −∇kNℓ −∇ℓNk) =

2
√

g

κ2
GijkℓKkℓ, (4.30)

where

Kij =
1

2N
(ġij −∇iNj −∇jNi) (4.31)

is the extrinsic curvature tensor on the spatial leaves of the spacetime foliation. The

momenta conjugate to N and Ni are identically zero, and their vanishing represent primary

first-class constraints. The Poisson bracket of the canonical variables is

[gij(x), πkℓ(y)] =
1

2

(
δk
i δℓ

j + δℓ
i δ

k
j

)
δD(x − y). (4.32)

In terms of the canonical variables, the Hamiltonian takes the form

H =

∫
dDx

(
NH + NiHi

)
, (4.33)

with H and Hi given by

H =
κ2

2
√

g
πijGijkℓπ

kℓ +
κ2√g

4κ4
W

(
Rij − 1

2
Rgij

)
Gijkℓ

(
Rkℓ − 1

2
Rgkℓ

)

=
κ2

2
√

g

[
πijπij −

λ

Dλ − 1
(πi

i)
2

]
+

κ2√g

4κ4
W

(
RijRij + aR2

)
(4.34)
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(where a is again as in (4.11)), and

Hi = −2∇jπ
ij. (4.35)

We would now like to calculate the algebra satisfied by the constraints in our nonrelativistic

theory.

For comparison, it will be useful to recall first the structure of the relativistic con-

straints. In general relativity formulated in the canonical ADM formalism, the Hamilto-

nian is also given by (4.33). The momentum constraints Hi take the same form as given

in (4.35), while H is replaced by the relativistic Hamiltonian constraint

H⊥ =
16πGN

2
√

g
πijGijkℓπ

kℓ −
√

g

16πGN

(R − 2Λ) , (4.36)

where GN is the Newton constant, and λ has been set equal to 1. The quantum version of

this constraint yields the Wheeler-De Witt equation.

General relativity is fundamentally built on the principle of spacetime diffeomorphism

invariance. One might therefore expect that the fist-class constraints Hi(t,x) and H⊥(t,x)

just confirm the naive expectation, and form the algebra of spacetime diffeomorphisms.

However, as is well-known, it is not so: Under the Poisson bracket, the constraints of

general relativity do not even close to form a Lie algebra. Their commutation relations are
[∫

dDx ζ(x)H⊥(x),

∫
dDy η(y)H⊥(y)

]
=

∫
dDx (ζ∂iη − η∂iζ) gijHj(x), (4.37)

[∫
dDx ζi(x)Hi(x),

∫
dDy η(y)H⊥(y)

]
=

∫
dDx ζi∂iηH⊥(x) (4.38)

[∫
dDx ζi(x)Hi(x),

∫
dDy ηj(y)Hj(y)

]
=

∫
dDx (ζi∂iη

k − ηi∂iζ
k)Hk(x). (4.39)

First, (4.39) is easy to interpret: It shows that the Hi constraints form the Lie algebra

of generators of spatial diffeomorphisms, preserving the time foliation of the canonical

formalism. Similarly, (4.38) simply indicates that H⊥(y) transforms as a density under the

spatial diffeomorphisms generated by Hi. The subtlety occurs in the commutation relation

of two H⊥: Because of the explicit presence of gij in (4.37), the structure “constants” are

field-dependent, and strictly speaking, the constraints do not form a Lie algebra. This fact

contributes to the notorious conceptual as well as technical difficulties in the process of

quantization of the relativistic theory (see, e.g., [31, 32]).

In our nonrelativistic gravity, the structure of constraints is slightly different than

in general relativity. If the lapse field N is restricted to a function of time only, the

constraint algebra is generated by the momentum constraints Hi(t,x), which take the

general relativistic form (4.35), and the integral of H:

H0 ≡
∫

dDxH(t,x). (4.40)

It is easy to show that these constraints form a closed algebra. The commutator of two

Hi(x) generators coincides with (4.39). Our H(x) transforms as a density under generators
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Hi of spatial diffeomorphisms and therefore satisfies (4.38), implying that Hi(x) commute

with the zero mode H0, as can be seen by setting η = 1 in (4.38). (For this to work, it

is important that H(x) transforms as a density, which eliminates possible terms ∼ η∂iζ
i

in (4.38).) Finally, H0 of course commutes with itself.

The general theory of constrained systems [33] can be used to predict the number

of physical degrees of freedom in our system. There are 2D first-class constraints per

spacetime point: D components of Hi and D momenta conjugate to Ni. We also have

D(D + 3) fields: D(D + 1)/2 components of gij and their conjugate momenta, and D

components of Ni and their momenta. The expected number of degrees of freedom per

spacetime point is

#(DoF) =
1

2

(
#(field components) − 2 × #(first-class constraints)

)
=

=
D(D − 1)

2
=

(D + 1)(D − 2)

2
+ 1. (4.41)

The number of massless graviton polarizations in relativistic gravity in D + 1 spacetime

dimensions is (D + 1)(D − 2)/2. Thus, compared to general relativity, our theory is gener-

ically expected to have one additional propagating scalar degree of freedom, at least in the

absence of any additional gauge symmetry.

4.5 At the free-field fixed point with z = 2

In order to prepare for the study of the full interacting theory, it is useful to first understand

the properties of its free-field fixed point limit. Free-field limits of anisotropic theories with

nontrivial dynamical critical exponent z exhibit interesting properties, such as families of

inequivalent fixed points, as we have seen in the example of z = 2 Yang-Mills theory in [2].

4.5.1 Scaling properties and the critical dimension

By design, our nonrelativistic gravity has a free-field limit with anisotropic scaling of space

and time, characterized by dynamical critical exponent z = 2. The engineering dimensions

( i.e., the scaling dimensions at the z = 2 free-field fixed point) of various quantities are

as follows. First, just as in general relativity, the metric components gij are naturally

dimensionless as a result of their geometric origin. The dimensions of the remaining fields

are then determined to be

[gij ] = 0, [Ni] = 1, [N ] = 0. (4.42)

In the formulation that uses the auxiliary field Bij, we also have [Bij] = 2.

The coupling constants appearing in (4.22) have dimensions

[κ] =
2 − D

2
, [κW ] =

2 − D

2
, [λ] = 0. (4.43)

As in the system of the Lifshitz scalar at z = 2, making the gravity theory anisotropic with

dynamical exponent z = 2 has shifted the critical dimension of the free-field fixed point,

from 1 + 1 to 2 + 1. This is the dimension where both κ and κW are dimensionless. Of
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course, in the critical dimension D = 2, the Einstein tensor and consequently the potential

term SK in the action vanish identically. This simplification of z = 2 gravity in the critical

case of 2+1 dimensions is closely related to the simplification of relativistic gravity in 1+1

dimensions, where the Einstein-Hilbert action is a topological invariant.

The free-field fixed point is defined by “turning off” all the coupling constants that

measure interactions. Our theory has three couplings: κW , κ and λ. As it turns out, only

one of them measures the strength of self-interactions of the gravitons, and turning it off

makes the theory free. More precisely, turning off the interactions is equivalent to sending

κW to zero while keeping λ and the ratio

γ =
κ

κW

(4.44)

fixed. This leaves two dimensionless coupling constants γ and λ which survive in the

noninteracting limit and measure the properties of the free-field fixed point. Thus, we

obtain a two-parameter family of fixed points, all with z = 2. This is very analogous

to the case of quantum critical Yang-Mills theory studied in [2], which exhibits a similar

one-parameter family of free fixed points with z = 2.

4.5.2 The spectrum

We will now determine the spectrum of physical excitations, and their dispersion relations,

in the family of free fixed point parametrized by γ and λ.

The action at the free-field fixed point can be found by expanding the theory around

the flat background with gij = δij , N = 1 and Ni = 0. This background is indeed a

classical solution of the theory, for any value of γ and λ. We expand the fields around this

solution, writing

gij = δij + κW hij . (4.45)

Ni are of order κW , and we rescale them accordingly. Finally, the corrections to N = 1

drop out in this approximation.

The Gaussian action of the linearized theory is then

S =
1

2

∫
dt dDx

{
1

γ2

[(
ḣij − ∂iNj − ∂jNi

)(
ḣij − ∂iNj − ∂jNi

)
− λ

(
ḣii − 2∂iNi

)2
]

− γ2

16
hij

[
(D − 2)(2λ − 1)

Dλ − 1

(
∂i∂j∂k∂ℓ + δijδkℓ

(
∂2
)2 − 2δij∂k∂ℓ∂

2
)

+ 2 (δij∂k∂ℓ − δik∂j∂ℓ) ∂2 + (δikδjℓ − δijδkℓ)
(
∂2
)2
]

hkℓ

}
. (4.46)

In order to identify the propagating modes and determine their dispersion relations, we

must make a suitable gauge choice and diagonalize this action. Given the nonrelativistic

character of the theory, it is natural to choose

Ni = 0 (4.47)

as our gauge-fixing condition. This gauge choice does not fix the gauge symmetries com-

pletely, leaving the group of time-independent spatial diffeomorphisms unfixed. In addition,
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making this gauge choice implies that the fields in (4.46) are constrained by the following

analog of the Gauss constraint,

∂iḣij = λ∂j ḣ, (4.48)

where h ≡ hii. This constraint comes from the linearized equation of motion of Ni in the

full gauge-invariant action. We can fix the residual gauge symmetry by setting

∂ihij − λ∂jh = 0, (4.49)

at some fixed time surface, t = t0. The constraint (4.48) then implies that (4.49) continues

to hold at all times.

(4.49) is a legitimate gauge choice for values of λ not equal to one. When λ = 1, (4.49)

is not attainable by a spatial diffeomorphism. The simplest way to see that is to apply ∂j

to (4.49). The left hand side then equals ∂j∂ihij − ∂2h = R, the linearized Ricci scalar

which cannot be set to zero by a gauge transformation. As we will see below, λ = 1 is

indeed a special case, where the free-field fixed point exhibits an enhanced gauge symmetry.

In order to read off the physical polarizations of the metric and their dispersion rela-

tions, we need to rewrite the quadratic action (4.46) in variables that automatically take

into account the constraints (4.48). We switch from hij to the new variables, defined as

Hij = hij − λδijh. (4.50)

Our residual gauge fixing (4.49) together with the Gauss constraint (4.48) imply that Hij

is transverse,

∂iHij = 0. (4.51)

The transverse tensor Hij contains all the physical polarizations of the metric. In order to

separate the individual modes, we further decompose Hij into the transverse traceless part

H̃ij and the trace part H:

Hij = H̃ij +
1

D − 1

(
δij −

∂i∂j

∂2

)
H. (4.52)

We have H̃ii = 0, ∂iH̃ij = 0, and H = Hii.

In this gauge, the linear equations of motion that follow from (4.46) can be diago-

nalized, and one can determine the number of physical polarizations and their dispersion

relations. H̃ij yields (D− 2)(D + 1)/2 transverse traceless polarizations, all with the same

dispersion relation

ω2 =
γ4

16
(k2)2. (4.53)

In addition, the trace H leads to one mode, whose dispersion relation is

ω2 =
Γ4

16
(k2)2, (4.54)

with

Γ4 =
(D − 2)2(λ − 1)2

(Dλ − 1)2
γ4. (4.55)
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The free-field fixed point is well-defined in the large range of the parameters λ and

D for which the energy of the excitations is bounded from below. We can identify this

physical range of parameters by expressing the gauge-fixed action in terms of H̃ij and H.

The kinetic term becomes

SK =
1

2γ2

∫
dt dDx

{
˙̃
Hij

˙̃
H ij +

λ − 1

(D − 1)(Dλ − 1)
Ḣ2

}
, (4.56)

and the potential term is

SV =
1

32γ2

∫
dt dDx

{
∂2H̃ij∂

2H̃ij +
(D − 2)2(λ − 1)3

(D − 1)(Dλ − 1)3
(
∂2H

)2
}

. (4.57)

Hence, assuming D > 1 the energy of the physical modes is positive definite when λ < 1/D

or λ > 1. In the complementary regime 1/D < λ < 1, the scalar mode H is a ghost.

The dispersion relation (4.54) for the scalar mode H suggests that something special

happens at λ = 1/D and λ = 1. When λ = 1/D, the De Witt metric develops a null

direction. As a result, this is the value at which the theory may develop a local version of

conformal symmetry, depending on the specific form of the potential term in the action.

This case will be relevant to our membrane theory in section 5, where we will be interested

in incorporating a local Weyl invariance in 2 + 1 dimensions.

At the other special value, λ = 1, the equation of motion for the scalar mode H(t,x)

collapses to Ḧ = 0, with the general solution

H(t,x) = H0(x) + tH1(x). (4.58)

If present, such degrees of freedom would be difficult to interpret as physical excitations. As

it turns out, at this value of λ, the linearized theory develops an enhanced gauge symmetry,

acting via

δNi = ∂iε(x), δhij = 0, (4.59)

i.e., as a time-independent U(1) gauge transformation. This is the Abelian symme-

try (4.17), linearized and reduced to preserve A = 0. This spatial gauge symmetry plays an

interesting role in the theory. The Ni = 0 gauge can now be attained in two steps, first by

using a diffeomorphism to get Ni = ∂iu for some function u(x), and then using (4.59) with

ε = −u to set Ni = 0. The first step leaves an extra unfixed diffeomorphism symmetry,

given by ζi(t,x) that satisfy ζ̇i = ∂iu(x). The generators of such unfixed diffeomorphisms

are of the form

ζi(t,x) = ζi
0(x) + t∂iu(x). (4.60)

These residual diffeomorphisms acts on H via δH ∼ ∂iζ
i. The extra gauge freedom given

by u(x) can be used to set H1 in (4.58) to zero, leaving the transverse traceless gravitons

as the only physical excitations at λ = 1.

4.6 Relevant deformations: lower-dimension operators in the potential term

So far, we concentrated on the terms in the action which have the same engineering dimen-

sion as the kinetic term (4.1). These are the terms that determine the behavior of the z = 2
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fixed point. Now we extend our analysis to incorporate operators with lower dimensions,

compatible with the symmetries of the theory. If such operators exist, general arguments

from effective field theory indicate that such terms will be generated by quantum effects,

and will dominate over the original terms in SV in the long-distance dynamics of the theory.

We will discuss the issue of relevant deformations of z = 2 gravity in D +1 dimensions

only briefly, because in section 5 we will follow a different route: We will impose an addi-

tional gauge symmetry, related to Weyl invariance, which will forbid any lower-dimensional

operators in z = 2 gravity in 2 + 1 dimensions.

In theories satisfying the detailed balance condition, there is a hierarchy of ways in

which lower-dimension operators can be added to the classical theory:

1. In the minimal modification, we add lower-dimensional operators to W , and thus

preserve the detailed balance condition.

2. We can add terms to Eij which respect all the symmetries but cannot be derived

from varying any action in D dimensions (if such terms exist).6

3. Finally, one can simply add lower-dimension operators directly to the action in D+1

dimensions, softly breaking not only the condition of detailed balance, but also the

fact that in the representation with the auxiliary field B, only terms at least linear

in B appear in the action.

In the following, we will mostly focus on the first option, in which lower-dimensional

terms are added to W . For z = 2 gravity without matter, the only such term that can be

added to W is the cosmological constant term. Restoring the cosmological constant in (4.9),

W =
1

κ2
W

∫
dDx

√
g(R − 2ΛW ), (4.61)

we get the following action in D + 1 dimensions

S =
1

2

∫
dt dDx

√
g

{
1

κ2N
(ġij −∇iNj −∇jNi) Gijkℓ (ġkℓ −∇kNℓ −∇ℓNk)

− κ2N

4κ4
W

(
Rij − 1

2
Rgij + ΛW gij

)
Gijkℓ

(
Rkℓ − 1

2
Rgkℓ + ΛW gkℓ

)}
. (4.62)

In dimensions D > 2, turning on ΛW in W induces two new terms in SV : The spatial

Ricci scalar term R and the spatial volume term. In 2 + 1 dimensions, since Rij − Rgij/2

vanishes identically, no Ricci scalar term is produced in SV . We will return to this case in

detail in section 5, and limit our present discussion to D > 2.

It is natural to define a scale M ,

M2 =
D − 2

1 − Dλ
ΛW . (4.63)

6In fact, this can be done already for terms of the same dimension as those in Eij . For example, in the

theory of a single Lifshitz scalar reviewed in section 3.1, an example of such a term is ∂iΦ∂iΦ. The addition

of this term changes the theory radically, from the Lifshitz theory to the universality class associated with

the KPZ equation known from the nonequilibrium problem of surface growth.
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In terms of M , the action becomes

S =
1

2

∫
dt dDx

√
g

{
1

κ2N
(ġij −∇iNj −∇jNi)Gijkℓ (ġkℓ −∇kNℓ −∇ℓNk)

− κ2N

4κ4
W

(
RijRij + aR2 − M2R +

D(1 − Dλ)

(D − 2)2
M4

)}
. (4.64)

The constant a takes the value given in (4.11).

For simplicity, we will assume M2 > 0. If λ > 1/D, this means starting with a

negative cosmological constant, ΛW < 0, in W . The other sign of M2 would correspond to

the gravity analog of the “spatially modulated” phases in the Lifshitz scalar theory, which

we will not study in this paper.

Under the influence of the deformation by lower-dimension operators, the theory will

flow from z = 2 at short distances, to z = 1 in the infrared. This flow to z = 1 is in fact

generic for quantum theories of the Lifshitz type (see [2]). The dynamics of the theory at

long distances will be dominated by the most relevant operators. In our gravity theory,

those will be the terms in SV with couplings involving nonzero powers of M : The spatial

Ricci scalar, and the spatial volume term. Together with the kinetic term SK , these are

exactly the ingredients that are required in general relativity.

In order to compare the long-distance physics of the theory deformed by relevant

operators to that of Einstein’s theory, it is natural to redefine the time coordinate,

x0 = ct, c =
γ2

4
M. (4.65)

This is one of the most notable features of our construction: The effective long-distance

speed of light originates microscopically from a relevant coupling in the theory describing

the anisotropic short-distance dynamics.

In these relativistic coordinates, the dominant long-distance terms in the Hamilto-

nian H(x) of our deformed theory are precisely such that they reproduce the relativistic

Hamiltonian H⊥(x) of (4.36), with the effective Newton constant

GN =
κ2

W

8πM
, (4.66)

and the effective cosmological constant

2Λ =
D(1 − Dλ)

(D − 2)2
M2 =

D

D − 2
ΛW . (4.67)

Thus, we conclude that

• under the influence of relevant deformations, the anisotropic gravity theory flows in

the infrared limit naturally to a theory with isotropic scaling and z = 1, and leads to

long-distance physics which is remarkably close to general relativity.

• There are several differences between the general relativity and the z = 1 infrared

limit of our theory. First, our Hamiltonian depends on the additional coupling λ,

which equals 1 in general relativity. In addition, we restricted the lapse variable N

to be independent of spatial coordinates.
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• Notably, the emerging long-distance speed of light (4.65), the effective Newton con-

stant (4.66), and also the effective cosmological constant (4.67) all originate from the

relevant deformations of a deeply nonrelativistic short-distance theory of gravity with

anisotropic scaling and z = 2.

• While interactions and quantum effects will affect some features of the flow, our

conclusions are exact in the noninteracting limit κW = 0.

5 Membranes at criticality: z = 2 gravity and matter in 2+1 dimensions

Having presented the construction of z = 2 gravity, we can now return to our original

problem, and combine this theory in 2 + 1 dimensions with Lifshitz matter, in order to

establish the desired connection to the partition function of the bosonic string. In the

process, we must clarify how the worldsheet Weyl invariance of critical string theory can

be incorporated into our scheme.

5.1 Coupling z = 2 gravity to Lifshitz matter

We now consider the z = 2 gravity theory in its critical dimension 2 + 1, coupled to 26

Lifshitz scalar fields XI(t,x), I = 1, . . . 26. Our starting point is the Polyakov worldsheet

action for the bosonic string of Euclidean worldsheet signature, embedded in the spacetime

target manifold R26 parametrized by coordinates XI and equipped with the flat Euclidean

metric δIJ :

W =
1

4πα′

∫
d2x

√
g gij∂iX

I∂jX
I . (5.1)

Combining the construction of z = 2 gravity presented in section 4 with the Lifshitz matter

reviewed in section 3.1, we obtain the action of the coupled system of z = 2 gravity and

z = 2 matter in 2 + 1 dimensions,

S =
1

2

∫
dt d2x

√
g

{
1

κ2N
(ġij −∇iNj −∇jNi)Gijkℓ (ġkℓ −∇kNℓ −∇ℓNk)

+
1

αMN

(
Ẋ − N i∂iX

)2
− αM N

(4πα′)2
(∆X)2 − κ2N

4(4πα′)2
T ij Gijkℓ T kℓ

}
. (5.2)

Here

∆XI ≡ 1√
g
∂i(

√
ggij∂jX

I) (5.3)

is the Laplace operator of gij acting on the scalar field XI , and

Tij ≡ 4πα′ 1√
g

δW

δgij
= ∂iX

I∂jX
I − 1

2
gij(g

kℓ∂kX
I∂ℓX

I) (5.4)

is the energy-momentum tensor of the scalar fields in (5.1). This action is gauge invariant

under foliation-preserving diffeomorphisms, and satisfies the detailed balance condition

with respect to (5.1). Under the foliation-preserving diffeomorphisms (4.13), the Lifshitz

scalars transform as

δXI = f ẊI + ζi∂iX
I . (5.5)
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Note that the kinetic term for the Lifshitz scalars in (5.2) required the introduction

of a new coupling αM of the same dimension as α′, i.e., spacetime length squared. We

can express this new spacetime length scale in terms of α′, and define a new dimension-

less parameter

κ2
M =

αM

4πα′
(5.6)

instead. In addition to κM , the theory has two other dimensionless couplings: λ, which is

hidden in the definition of the De Witt metric (4.2), and κ. Since the coupling of matter to

gravity leads to the nonlinear terms TijT
ij in (5.2), the theory is interacting at nonzero κ.

The free limit corresponds to taking α′ → 0 and κ → 0. The remaining two dimensionless

parameters κM and λ survive in the free field limit, and characterize the properties of the

family of free-field fixed points in z = 2 gravity with matter in 2 + 1 dimensions.

5.2 Anisotropic Weyl symmetry

The gauge symmetries of our coupled theory (5.2) do not yet match those of critical string

theory. Upon canonical quantization, worldsheet diffeomorphisms are reproduced as sym-

metries of wavefunctions, but Weyl invariance is not.

One could go in the direction of noncritical string theory, and try to develop a cor-

responding noncritical theory of membranes.7 In this paper, we are more interested in

reproducing the conventional critical bosonic string, and we must therefore look for an

implementation of a 2 + 1 dimensional analog of Weyl invariance on the membrane world-

volume, as an additional gauge symmetry supplementing the foliated diffeomorphisms.

The requirement of a local Weyl invariance will actually fix the value of λ of the gravity

sector uniquely. Moreover, this gauge invariance extends to the matter sector as well,

described by the Lifshitz scalar theory. We define the “anisotropic Weyl transformations”

— for any value of the dynamical critical exponent z — as follows,

gij → exp {2Ω(t,x)} gij , Ni → exp {2Ω(t,x)}Ni, N → exp {zΩ(t,x)}N. (5.7)

Since the anisotropic Weyl transformations act nontrivially on N , we can no longer restrict

N to be independent of space; N is now a 2 + 1 dimensional field, N(t,x).

Such anisotropic Weyl transformations with fixed z form a closed algebra with foliation-

preserving diffeomorphisms (4.16): Denoting by δω the infinitesimal Weyl transformation

with parameter ω(t,x), and by δv the infinitesimal foliation-preserving diffeomorphism

transformation v ≡ (f(t), ζi(t,x)) as given in (4.16), one can show that their commutator

yields another anisotropic Weyl transformation,

[δv , δω] = δeω, with ω̃ = ζi∂iω + f ω̇. (5.8)

Specializing to z = 2, our Lagrangian is classically invariant under the anisotropic Weyl

transformations if we set λ = 1/2. In the proof of this gauge invariance, it is important

7This could be relevant for the relation between noncritical strings in two dimensions, noncritical M-

theory in 2 + 1 dimensions, and topological strings of the A-model, as discussed in [8]. This possibility was

indeed one of the original motivations for this project.
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that for infinitesimal Weyl transformation ω (and again temporarily restoring arbitrary z

and arbitrary space dimension D for future reference)

δω(∇iNj) = 2ω∇iNj + Nj∂iω − Ni∂jω + gijg
kℓNk∂ℓω. (5.9)

Contracting this with the De Witt metric, we get

Gijkℓδω(∇iNj) = 2ω Gijkℓ∇iNj + (1 − Dλ)gkℓgijNi∂jω. (5.10)

Hence, for the conformal value λ = 1/D, the terms with derivatives of δω vanish, and the

kinetic term for gravity will be invariant under the local anisotropic Weyl transformations.

Returning now to the case of interest, D = 2, we set the coupling constant λ in the

De Witt metric Gijkℓ equal to its conformal value λ = 1/2. Our action (5.2) is gauge

invariant under local anisotropic Weyl transformations, at least at the classical level. This

continues to be the case after coupling to the Lifshitz scalars XI , provided they transform

with weight zero under the Weyl transformations, δωXI = 0. The requirement of local

anisotropic Weyl symmetry forbids any relevant terms in the action of our coupled system

of z = 2 gravity and z = 2 matter in 2 + 1 dimensions.

5.3 Canonical formulation

In order to understand properties of the ground-state wavefunction, we would like to quan-

tize our 2 + 1 dimensonal theory with anisotropic Weyl invariance canonically on Σh ×R,

where Σh is the Riemann surface of genus h.

We use the ADM formulation of section 4.4, generalized to the presence of matter.

The momenta conjugate to gij were found in (4.30):

πij =

√
g

κ2N
Gijkℓ (ġkℓ −∇kNℓ −∇ℓNk) =

2
√

g

κ2
GijkℓKkℓ. (5.11)

Once we set λ = 1/2 in the De Witt metric, as required by anisotropic Weyl invariance,

we find that the momenta (5.11)

πij =
2
√

g

κ2

(
Kij − 1

2
gijK

)
, (5.12)

(where K ≡ gijKij) are traceless,

πi
i ≡ gijπ

ij = 0, (5.13)

as a consequence of the local Weyl symmetry. (5.13) is a new primary constraint, When

this constraint is solved, only the traceless momenta — which we denote by π̃ij — appear

in the theory.

Similarly, the momenta PI conjugate to the Lifshitz scalars XI are

PI =
δS

δẊI
=

√
g

αM N
(ẊI − N i∂iX

I). (5.14)
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The Hamiltonian is

H =

∫
d2x

(
NH + NiHi

)
, (5.15)

with

H =
κ2

2
√

g
π̃ijgikgjℓπ̃

kℓ +
αM

2
√

g
PIPI +

√
g

2(4πα′)2

(
αM∆XI∆XI +

κ2

4
TijT

ij

)
, (5.16)

and

Hi = −2∇jπ
ij + gijPI ∂jX

I . (5.17)

5.4 The algebra of constraints

The anisotropic Weyl invariance requires N to be a general function of t and x. As a result,

the structure of the Hamiltonian (5.15) indicates that in the Weyl invariant theory, both

Hi(x) and H(x) (and not just its zero mode H0 =
∫

d2xH(x)) will play the role of the

constraints, and we must determine their algebra.

As an alternative to the general relativistic constraints (4.37)–(4.39), another algebra

of “general covariance” was proposed in [34]:

[∫
dDx ζ(x)H⊥(x),

∫
dDy η(y)H⊥(y)

]
= 0, (5.18)

[∫
dDx ζi(x)Hi(x),

∫
dDy η(y)H⊥(y)

]
=

∫
dDx ζi∂iηH⊥(x), (5.19)

[∫
dDx ζi(x)Hi(x),

∫
dDy ηj(y)Hj(y)

]
=

∫
dDx (ζi∂iη

k − ηi∂iζ
k)Hk(x). (5.20)

This in some sense is a nicer symmetry than (4.37)–(4.39): It actually forms a Lie algebra,

with structure constants independent of the fields. It is a symmetry of the so-called “ultralo-

cal theory of gravity” [34, 35] which in fact fits naturally into our framework: The action in

the ultralocal theory of gravity also takes the form S = SK − SV , with SK given by (4.1),

and SV set equal to zero (or to
√

gΛ in the case of a nonzero cosmological constant).

As it turns out, the ultralocal algebra (5.18)–(5.20) is also the algebra of Hamiltonian

constraints of z = 2 gravity in 2 + 1 dimensions with Weyl invariance and without matter.

The simplest way to see that is to notice that in the critical dimension D = 2, the potential

term SV in our z = 2 theory vanishes identically, and the full action coincides that that of

the ultralocal theory, with λ = 1/2.

When Lifshitz matter is introduced, the commutator of two H(x) no longer vanishes.

Instead, we get

[∫
d2x ζ(x)H(x),

∫
d2y η(y)H(y)

]
=

∫
d2x (ζ∂iη − η∂iζ)Φi(x), (5.21)

with

Φi(x) = − αM

(4πα′)2

(
κ2π̃ij∂jX

I∆XI − κ2

2
P I∂jX

IT ij + αM gij(P I∂j∆XI − ∂jP
I∆XI)

)
.

(5.22)
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One could attempt to add Φi(x) to the list of constraints, and continue the process until

the constraint algebra closes. However, there is a simpler alternative, which will go a long

way towards solving our original problem. Note first that Φi can be rewritten as

Φi(x) =
iαM

(4πα′)2

{
κ2∆XI∂jX

I

(
iπ̃ij −

√
g

8πα′
T ij

)

+

(
αM gij(∂j∆XI − ∆XI∂j) −

κ2

2
T ij∂jX

I

)(
iP I −

√
g

4πα′
∆XI

)}
. (5.23)

This suggests introducing

aij = iπij +
1

2

δW

δgij
= iπij −

√
g

8πα′
T ij, (5.24)

QI = iP I +
1

2

δW

δXI
= iP I −

√
g

4πα′
∆XI , (5.25)

and their complex conjugates

aij = −iπij −
√

g

8πα′
T ij, Q

I
= −iP I −

√
g

4πα′
∆XI . (5.26)

In our system of gravity coupled to matter, QI and aij are the precise analogs of the Q
variable (3.9) defined in our discussion of the Lifshitz scalar theory in section 3.1. In terms

of these variables, the Hamiltonian constraint itself can be written as

H =
κ2

2
√

g
aijGijkℓ akℓ +

αM

2
√

g
Q

I
QI . (5.27)

Given these facts, the following way towards quantization of the system suggests itself.

Instead of {Hi,H,Φi, . . .}, we can choose the constraints to be {Hi, a
ij , QI}. This may

not be the unique possibility how to approach the quantization of our system, but it does

exhibit the following attractive features:

• Since H(x), Hi(x) and Φi are linear in aij and QI , the vanishing of our constraints

aij and QI implies the vanishing of the Hamiltonian and momentum constraints H
and Hi, as well as Φi. Similarly, it implies that the constraint of (5.13) also vanishes,

because gija
ij = iπi

i.

• aij, QI and Hi form a closed algebra of first-class constraints. First, aij and QI

all commute. Moreover, their commutator with Hi simply states how aij and QI

transform under spatial diffeomorphisms, and therefore vanishes when the constraints

are satisfied.

Quantum mechanically, the physical wavefunctions of the membrane states should be

annihilated by all the constraints. Our intended ground-state wavefunction

Ψ0[gij(x),XI (x)] = exp

{
− 1

8πα′

∫
d2x

√
ggij∂iX

I∂jX
I

}
(5.28)
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satisfies the quantum version of the constraint equations,

aijΨ0 ≡
(

δ

δgij
−

√
g

8πα′
T ij

)
Ψ0 = 0,

QIΨ0 ≡
(

δ

δXI
−

√
g

4πα′
∆XI

)
Ψ0 = 0, (5.29)

as well as HiΨ0 = 0. It appears to be the only normalizable wavefunction satisfying all the

constraints. As a result, the spectrum of membrane states will contain only the ground

state, and no physical excited states.

This indicates that the quantization with this strong set of constraints provides an

affirmative answer to the original question, about the existence of a membrane theory whose

ground-state wavefunction on a Riemann surface Σh reproduces the partition function of

the bosonic string on Σh.

5.5 Generalizations

The set of constraints which we imposed in the previous section is almost certainly un-

necessarily strong. However, it does lead to the desired result, a membrane theory which

reproduces the string partition functions. The resulting membrane theory therefore rep-

resents a solution of the first-quantized version of the auxililary problem posed in the

introduction, albeit perhaps not the most exciting one: The only physical excitation of the

membranes are their ground states.

Here we present a few preliminary remarks which might be useful in trying to find

more interesting realizations, with physical membrane states beyond the ground state.

In the theory without Weyl invariance, studied in section 4, it was natural to treat

N as a function of only t, which resulted in a simple algebra of constraints. Since Weyl

transformations act on N , in a theory with Weyl symmetry N must be allowed to depend

on t and x. However,

Ñ =
N√
g

(5.30)

is an invariant under the Weyl transformations, and we may attempt to restrict Ñ to be a

function of only t. Such a restriction would not be fully invariant under all diffeomorphisms,

but only under those that satisfy

∂iζ
i(t,x) = 0. (5.31)

These are the area-preserving diffeomorphisms of Σ. Under this restriction, the algebra of

Hamiltonian constraints again closes on Hi(t,x) and H0.

This scenario is closely related to the possibility of not imposing Weyl invariance. This

in turn implies that we can move away from the conformal value of the coupling, λ = 1/2.

As we saw in section 4.5.2, this set of gauge symmetries leads to one additional degree of

freedom, the conformal factor φ of the metric. In conformal gauge, we can write gij = eφδij .

In string theory, φ is known as the Liouville field. The kinetic term for this extra Liouville

scalar φ will be of second order in time derivatives, ∼ (φ̇)2. The analysis of section 4.5.2

shows that as we move away from the conformal value λ = 1/2 to larger λ, the sign of the
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kinetic term for φ is negative. Thus, in this range of λ, φ plays the role of an extra target

dimension, a phenomenon reminiscent of the behavior of the Liouville mode in noncritical

string theory. The vanishing of the Hamiltonian constraint H0 on physical states will

then impose an on-shell condition, which can be solved by membrane states with non-zero

frequencies and non-zero spatial momenta in the target spacetime with coordinates (XI , φ).

In addition, if the worldsheet theory described by the classical Polyakov action W has a

conformal anomaly (as in the case of noncritical string theory), the effective action in two

dimensions contains a nonlocal term

W ′ ∼
∫

d2xR
1

∆
R. (5.32)

In conformal gauge, δW ′/δφ ∼ ∆φ. As a result, when we apply the logic of our construction

to W + W ′, the anomalous term W ′ will give rise to a nonzero contribution ∼ (∆φ)2 in

the potential term SV of the 2 + 1 dimensional action. In conformal gauge, the Liouville

conformal factor thus becomes a full-fledged Lifshitz scalar.

Note that the effective metric on the target manifold (XI , φ) will be relativistic, as

can be seen from the worldvolume kinetic terms for these fields, schematically of the form

Ẋ2− φ̇2. If such a theory can be consistently quantized, it is likely to produce a relativistic

spectrum of low-frequency modes, for which we would have a natural interpretation, as

the superfuid excititations of the second-quantized Bose-Einstein condensate discussed in

section 2.

The full quantum theory of membranes in the noncritical regime, with the Liouville

field φ as one of the dynamical degrees of freedom and playing the role of time, is likely to

be very difficult to analyze, with complications similar to those that occur in string theory

away from its critical dimension.

6 Conclusions

In this paper, we have introduced a new class of nonrelativistic gravity models, character-

ized by anisotropic scaling between space and time with a nontrivial value of the dynamical

critical exponent z = 2. This anisotropy leads to a change of the critical dimension of the

system to 2 + 1, and makes the theory suitable for the worldvolume of a membrane where

it can be coupled to quantum critical matter with z = 2.

Any mathematically consistent theory of gravity can be expected to have at least four

different categories of applications:

(i) On worldvolumes of strings or branes, as required by their worldvolume

reparametrization invariance.

(ii) As a theory of the observed gravitational effects in our Universe.

(iii) In the context of the AdS/CFT correspondence, as a candidate for the dual descrip-

tion of interesting classes of CFTs and more general quantum field theories.

(iv) Applications in mathematics, such as those produced by topological gravity and

topological strings.

– 30 –



J
H
E
P
0
3
(
2
0
0
9
)
0
2
0

The present paper mostly focused on the first class of applications of nonrelativistic gravity,

as a candidate theory on the membrane worldvolume where the z = 2 system is at its critical

dimension. However, our more general discussion of gravity at z = 2 in D + 1 spacetime

dimensions in section 4 can be expected to be useful for possible applications (ii) and (iii)

as well (see also [36]).

As to (iv), we have seen in section 4.3.4 that gravity at the z = 2 Lifshitz point is

intimately related to the Ricci flow equations, and in a sense represents the natural quantum

field theory associated with the Ricci flow.8 The concept of the Ricci flow was instrumental

in Perelman’s theory and the proof of the Poincaré conjecture [30]. It would be interesting

to develop this connection further, and see for example whether correlation functions of

natural observables in our field theory shed additional light on Perelman’s theory. Our

theories of gravity with anisotropic scaling should also be relevant to the mathematically

rich theory of foliations and their invariants [19–21].

In the context of z = 2 worldvolume gravity, the problem of summing over membrane

topologies and organizing the sum into a topological expansion is also put in a new light:

The 3-manifolds in question now carry an additional topological structure of a foliation. It

is possible that this extra structure makes the summation over a specific class of foliated

manifolds more managable that the sum over all topologies. When membranes interact, the

topology of the spatial leaves of the foliation changes. Hence, in the sum over topologies,

membrane interactions are likely to require foliations with singularities, such as those that

occur in Morse theory [38], with the role of the Morse function played by worldvolume time.

In this paper, we only considered the simplest case, of the bosonic theory. In order to

see whether the ideas of anisotropic worldvolume gravity are relevant to the relativistic M2-

branes of supersymmetric M-theory, a generalization of our framework to membranes with

spacetime supersymmetry would be required. In particular, it is natural to ask whether

any version of anisotropic gravity in 2 + 1 dimensions can flow naturally to z = 1 at long

distances and serve as a UV completion of the relativistic worldvolume theory [39] on the

membranes of M-theory.
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